中国农业科学院烟草所遗传育种中心昝艳君课题组诚招博后

昝艳君,中国农业科学院烟草研究所特聘研究员,博士生导师、农科院青年英才所级入选者。2007-2018年分别在山西农业大学、天津大学、瑞典乌普萨拉大学完成本、硕、博学习,获得瑞典乌普萨拉大学计算生物学博士学位。2018-2019年先后在瑞典乌普萨拉大学、瑞典农业科学大学从事植物基因组学与数量遗传学博士后研究。2020年获得瑞典Formas基金会资助被聘为Formas Research Fellow从事玉米全基因组选择育种研究,2022年全职加入中国农业科学院烟草研究所遗传育种中心,任智慧育种方向学科带头人。

课题组致力于整合基因组学方法创新和多基因性状的遗传与演化机制解析研究。建立了超低深度测序基因型填充方法、整合转录组和表型组的高统计功效基因定位方法、多元环境下全基因组选择预测方法,解析了家鸡体重、玉米产量、花期等多个育种关键性状的遗传和演化机制,深入阐释了基因和环境共同决定复杂性状变异的遗传学机制,建立了这些性状的高精度全基因组选择育种模型,为强化生物育种理论和技术体系做出了贡献。

现累计以第一或通讯作者在Molecular Biology and Evolution(2篇), Plant Communications, Molecular Ecology Resources(2篇), PLoS Genetics等期刊上发表论文11篇,以共同作者在Nature, Cell, Genome Biology,Current Biology等期刊发表文章14篇,开发R语言、Python语言软件包3个, 主持瑞典环境农业与空间规划基金会青年国际项目(Formas International Mobility Grant)、国自然青年项目、农科院青年英才引进工程启动经费、农科院基本科研业务费各一项,累计可以支配金额330万元,担任Frontiers in Genetics Topic Editor, Frontiers in Plant Science Review Editor。

现因课题组发展需要,面向海内外招聘博士后研究人员1-2名共同发展。

一、招聘需求

(1)作物整合基因组学与智慧育种方向博士后一名

  • 开展烟草基因组ENCODE计划,利用ATAC-seq,Cut&tag-seq,BS-seq Hi-C,等组学技术全面注释栽培烟草的转录区域、染色质开放区域、甲基化修饰区域、组蛋白修饰区域,预测启动子、增强子等转录调控元件
  • 绘制国家烟草中期库种质资源的全景多组学图谱。通过基因组、转录组、表观组和表型组联合分析,解析基因型和环境共同决定烟草农艺性状变异的遗传机制,建立主要育种性状的基因组预测模型和分子设计育种技术体系
  • 探究遗传连锁和一因多效在多个复杂性状遗传相关中的作用机制,建立多性状联合育种指数选择编制方法
  • 栽培烟草多组学数据库搭建

(2)烟草属多倍化过程中重要抗病和代谢性状的形成与演化方向博士后一名

  • 绘制烟草属二倍体种、四倍体种的基因组、表观组学变异图谱
  • 解析烟草属多个二倍体种四倍化后,基因组演化与重要的植物学性状、抗病性状、代谢物的形成与演化的关系
  • 烟草属多组学数据库搭建

二、招聘要求

  • 获得博士学位,具有良好的英文专业文献阅读、写作及口头表达能力。
  • 具有与研究学科方向相关的专业知识,在本研究领域发表过高水平SCI论文。近三年内以第一作者发表SCI、EI、CPCI-S、SSCI或CSSCI收录学术研究论文至少1篇,或在中文核心期刊发表学术研究论文至少2篇。
  • 身体健康、品行端正、热爱科研,勤勉敬业,乐于奉献,勇于创新,有团队合作精神。
  • 年龄在35周岁以下。在职人员须全脱产来研究所工作。

三、待遇

  • 享受研究所、山东省、青岛市各级补贴累计税前4万元(到手每月1.7)。
  • 在站期间在青岛购置商品房的,享受青岛市提供的安家费15万元。如出站后6个月内在青岛办理就业手续且落户在青岛的博士后,可享受25万元安家补贴。(以上两项不兼容)
  • 入选中国农业科学院博士后“优农计划”,在工资待遇基础上,额外给予资助6-10万元/年,连续资助两年。
  • 被评为“中国农业科学院优秀博士后”,给予5万元奖金奖励。
  • 住房公积金和社会保险按国家及研究所相关规定执行。
  • 在博士后期间争取到的科研立项、发表学术论文、编(译)专著、标准和获得专利、成果奖励等,按研究所有关规定兑现奖励。
  • 享受职工餐厅的伙食补贴(力度比较大)

四、申请方式

申请者请将个人简历(包含教育经历、研究经历、论文发表等)以电子邮件方式发送至:zanyanjun@caas.cn。 邮件主题和材料压缩文件请注明“姓名+申请博士后”。

所有应聘材料我们将会严格保密,课题组会在收到申请的两周内与初审合格者电话或E-mail联系,安排面试

五、课题组已发表文章

2023

  • Zan, Y., Chen, S., Ren, M., Liu, G., Liu, Y., Si, H., Liu, Z., Liu, D., Zhang, X., Tong, Y., Li, Y., Jiang, C., Wen, L., Xiao, Z., Sun, Y., Geng, R., Feng, Q., Wang, Y., Chen, Y., … Yang, A. (2023). GenBank genomics highlight the genomic features, genetic diversity and regulation of morphological, metabolic and disease-resistance traits in Nicotiana tabacum. BioRxiv, 2023.02.21.529366.
  • Jin, M., Liu, H., Liu, X., Guo, T., Guo, J., Yin, Y., Ji, Y., Li, Z., Zhang, J., Wang, X., Qiao, F., Xiao, Y., Zan, Y. #, & Yan, J#. (2023). Complex genetic architecture underlying the plasticity of maize agronomic traits. Plant Communications, 100473. https://doi.org/10.1016/j.xplc.2022.100473 (Co-corresponding author)

2022

  • Kang M, Wu H, Liu W, Zhu M, Han Y, Liu W, Chen C, Yin K, Zhao Y, Yan Z, Liu H, Lou SZan Y*, Liu J, (2022) The pan-genome and local adaptation of Arabidopsis thaliana, bioRxiv, 2022/1/1, https://doi.org/10.1101/2022.12.18.520013 (Submitted, Co-corresponding author)
  • Zhou Y#, Zhang Z#, Bao Z#, Li H, Lyu Y, Zan Y, Wu Y, Cheng L, Fang Y, Wu K, Zhang J, Lv H, Lin T, Gao Q, Saha S, Xu S, Zhang Z, Fei Z, Mueller L, Städler T, Speed D, Huang S, Graph pangenome captures missing heritability and empowers tomato breeding. (2022) Nature, 606, 527–534.
  • Niu, S., Li, J., Bo, W., Yang, W., Zuccolo, A., Giacomello, S., Chen, X., Han, F., Yang, J., Song, Y., Nie, Y., Zhou, B., Wang, P., Zuo, Q., Zhang, H., Ma, J., Wang, J., Wang, L., Zhu, Q., Zhao, H., Liu, Z., Zhang, X., Liu, T., Pei, S., Li, Z., Hu, Y., Yang, Y., Li, W., Zan, Y., Zhou, L., Lin, J., Yuan, T., Li, Wei, H., & Wu, H. X. (2022). The Chinese pine genome and methylome unveil key features of conifer evolution. Cell, 185(1), 204-217.e14.
  • Rönneburg T, Zan Y, Honaker CF, Siegel PB, Carlborg Ö (2022) Low-coverage sequencing in a deep intercross of the Virginia body weight lines provides insight to the polygenic genetic architecture of growth: novel loci revealed by increased power and improved genome-coverage, Poultry Science, 102203
  • ZQ Chen, Y Zan, L Zhou, B Karlsson, H Tuominen, MR García-Gil, HX Wu, 2022,Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce, Front Plant Sci. 2022; 13: 927673.

2021

  • Bernhardsson C#, Zan Y#, Chen Z, Ingvarsson P, Wu.H, Development and evaluation of a 50K Axiom SNP genotyping array for Norway spruce (Picea abies L. Karst). Molecular Ecology Resources, 2021, 21(3) 880-896(Co-first author, IF2017-2019=6.8).
  • Chen, Z. Q., Zan, Y., Milesi, P., Zhou, L., Chen, J., Li, L., Cui, B. Bin, Niu, S., Westin, J., Karlsson, B., García-Gil, M. R., Lascoux, M., & Wu, H. X. (2021). Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biology. https://doi.org/10.1186/s13059-021-02392-1
  • Guo, Ying, Ou, J., Zan, Y, Wang, Y., Li, H., Zhu, C., Chen, K., Zhou, X., Hu, X., & Carlborg, Ö. (2021). Researching on the fine structure and admixture of the worldwide chicken population reveal connections between populations and important events in breeding history. Evolutionary Applications, eva.13241. https://doi.org/10.1111/eva.13241
  • Ji, Y., Lehotai, N., Zan, Y, Dubreuil, C., Díaz, M. G., & Strand, Å. (2021). A fully assembled plastid‐encoded RNApolymerase complex detected in etioplasts and proplastids in Arabidopsis.** Physiologia Plantarum**, 171(3), 435–446. https://doi.org/10.1111/ppl.13256
  • Wang, X., Liu, S., Zuo, H., Zheng, W., Zhang, S., Huang, Y., Pingcuo, G., Ying, H., Zhao, F., Li, Y., Liu, J., Yi, T. S., Zan, Y, Larkin, R. M., Deng, X., Zeng, X., & Xu, Q. (2021). Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Current Biology. https://doi.org/10.1016/j.cub.2021.06.062

2020

  • Zan Y*, Carlborg Ö. Dissecting the Genetic Regulation of Yeast Growth Plasticity in Response to Environmental Changes, Genes, 2020, 11(11), 1279 (First and corresponding author, IF2017-2019=3.4).
  • Zan Y*, Carlborg Ö. Dynamic genetic architecture of yeast response to environmental perturbation shed light on origin of cryptic genetic variation. PLoS Genet, 2020, 16(5): e1008801 (First and corresponding author, IF2017-2019=5).

2019

  • Zan Y, Payen T, et al. Genotyping by low-coverage whole-genome sequencing in intercross pedigrees from outbred founders: a cost-efficient approach. Genetics Selection Evolution, 2019, 51(44), 1-11 (IF2017-2019=3.4
  • Zan Y, Carlborg Ö. A polygenic genetic architecture of flowering time in the worldwide Arabidopsis thaliana population. Molecular Biology and Evolution, 2019, 36 (1), 141-154 (IF2017-2019=12).

2018

  • Zan Y#, Forsberg S#, Carlborg Ö. On the relationship between high-order linkage disequilibrium and epistasis. G3 – Genes Genomes Genetics. 2018 Jul 31, 8(8):2817-2824 (Co-first author, IF2017-2019=2.7).
  • Zan Y, Carlborg Ö. A multi-locus association analysis method integrating phenotype and expression data reveals multiple novel associations to flowering time variation in wild-collected Arabidopsis thaliana. Molecular Ecology Resources, 2018, 1, 1-11 (IF2017-2019=6.8).

2017

  • Zan Y#, Sheng Z#, Lillie M et al. Artificial selection response due to polygenic adaptation from a multilocus, multiallelic genetic architecture. Molecular Biology and Evolution, 2017, 2, 7–10 (Co-first author, IF2017-2019=12).

2016

  • Zan Y, Xia S, Forsberg SKG, et al. Genetic regulation of transcriptional variation in natural Arabidopsis thaliana accessions. G3 – Genes Genomes Genetics, 2016, 6(8): 2319-2328 (IF2017-2019=2.7).

Before 2016

  • Zan Y, Ji Y, Zhang Y, et al. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. BMC Genomics, 2013, 14(1): 318 (IF2017-2019=3.6).

关注我们
扫描二维码
关注时代学者微信公众号,及时获取更多信息

QR Code 手机访问 微信分享